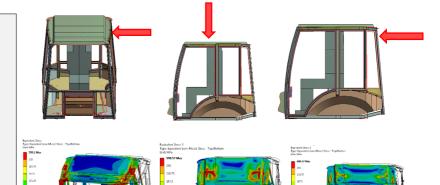
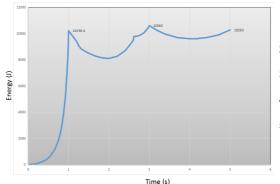
Summary

Project Name: Backhoe Loader Cabin Roller over protection safety using Finite Element Analysis

Software: ANSYS Workbench


Scope: To ensure the safety of operator, FE Analysis is carried out for a Cabin which is subjected to


various kinds of loads during machine extreme working conditions

Machine mass m	Lateral load force	Lateral load energy U	Vertical load force	Longitudinal load force
kg	N	J	N	N
Crawler earth-mov	ving machine: dozer,	loader, pipelayer and t	rencher type	
700 < m < 4 630	Спи	13 000 (w/10 000)1,25		4,8m
4 630 < m < 59 500	70 000 (m/10 000)1,2	13 000 (w/10 000)1,25	19,61m	56 000 (m/10 000) ^{1,2}
m > 59 500	10m	2,03m		8m
2) Grader				
700 < m ≤ 2 140	6m	15 000 (m/10 000)1.25		4,8m
2 140 < m < 38 010	70 000 (m/10 000) ^{1,1}	15 000 (m/10 000)1.25	19,61m	58 000 (m/10 000)1.1
m > 38 010	8m	2,09m		6,4m
 Wheeled earth-m backhoe loader and tre 	oving machine: load encher type	ler, tractor-dozer, pip	elayer, landfill comp	actor, skid-steer loader
700 < m < 10 000	Con	12 500 (w/10 000)1,25		4,8m
10 0000 < m < 128 600	60 000 (m/10 000)1,2	12 500 (w/10 000)1,25	19,61m	48 000 (m/10 000) ^{1,2}
m > 128 600	10m	2,37m		8m
4) Tractor section of	combined earth-mov	ing machine: tractor s	craper, articulated fra	me dumper
700 < m ≤ 1 010	бля	20 000 (m/10 000)1.25		4,8m
1 010 < m < 32 160	95 000 (m/10 000) ^{1,2}	20 000 (m/10 000) ^{1,25}	19,61m	76 000 (m/10 000) ^{1,2}
		2.68m		9.6m

- Extensive FE modelling techniques are used to prepare the cabin to apply ROPS sequence loadings
- Stress v/s strain curve was adapted to all the parts used in cabin to predict the plastic deformation around deflection limited volume.
- ISO 3471 Standard is referred to determines the loading required based on the category of the machinery
- Critical regions in the cabin are identified after the analysis and reported the deformations around DLV, & stress intensities

1sec- Lateral loading

2sec- Lateral unloading

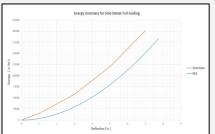
3sec- Vertical loading

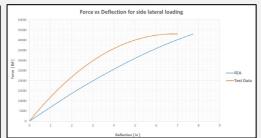
4sec- Vertical unloading

5sec-Longitudinal loading

Summary

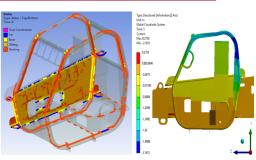
Project Name: Telehandler Cabin ROPS simulation using Finite

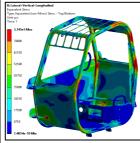

Software: ANSYS Workbench

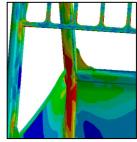

Scope: To perform virtual destructive test (ROPS-FEA) as per ISO3471:2008 to compare with physical testing and to suggest design modifications at critical regions to withstand specified force and energy criteria.

A NOTS, STH-1096, Side Later all load Times 1, 1, Times 1, 1, Thead Support Final Support

Force & Energy criteria


	LOADING SEQUENCE	REQUIREMENT	<u>APPLIED</u>	
	SAE ROPS Lateral Force	23,488 lbs.	43,051 lbs.	
	SAE ROPS Lateral Energy	197,155 inlbs.	200,812 inlbs.	
	SAE Vertical Load	69,988 lbs.	70,984 lbs.	
	SAE Front Longitudinal Load	18,790 lbs.	19,630 lbs.	
	ISO ROPS Lateral Force	104,480 N.	191,500 N.	
	ISO ROPS Lateral Energy	22,275 J.	22,689 J.	
Ē	ISO Vertical Load	311,323 N.	315,753 N.	
Ē	ISO Front Longitudinal Load	83,584 N.	87,319 N.	





- ISO 3471 Standard is referred to determines the loading required based on the category of the machinery
- The graph shows the Strain energy developed and deflection in the Cabin for lateral full loading (testing v/s FEA)

