


Gradeability analysis of MEWP Machine

Angle of Inclination:	$\theta_{uphill} = \operatorname{atan} (sr_{uphill}) = 17.74 \ deg$
Front Axle Normal Force:	$N_{\textit{front.axle.wphill}} \! := \! F_{\textit{front.axle.wphill}} \! \cdot \! \cos \left(\theta_{\textit{wphill}} \right) \! = \! 2078.8 \; \textit{lbf}$
Rear Axle Normal Force:	$N_{\textit{rear_axle_uphill}} \coloneqq F_{\textit{rear_axle_uphill}} \cdot \cos \left(\theta_{\textit{uphill}}\right) = 11976.7 \textit{ lbf}$
Tractive Effort Required	to climb Grade:
Front Axle Tractive Force: F	front axis_traction := $min\left(\mu_{trac} \cdot N_{front_axis_uphiii}, F_{axis_motor}\right) = 1351.2 \ lbf$
Rear Axle Tractive Force:	$r_{rear_axte_traction} := min \left(\mu_{trac} \cdot N_{rear_axte_uphii}, F_{axte_motor} \right) = 3448.7 \ lbf$
Total Available Tractive Effo	ort: $F_{true,avail} := F_{front,axle,traction} + F_{rear,axle,traction} = 4799.9 \ lbf$
Tractive Effort Required:	$F_{true_req} := W_{uphill} \cdot \left(\sin \left(\theta_{uphill} \right) + f_{res} \cdot \cos \left(\theta_{uphill} \right) \right) = 4778.9 \ lb$
Traction Index - Drive:	$TI_{drive} = \frac{F_{troc, avail}}{F_{troc, req}} = 1.004$
	Evaluation2 = "pass"
Traction Index - Drive: μ	$r_{req} = \mu_{min} \left(N_{front_axle_nphill}, N_{roar_axle_nphill}, F_{axle_motor}, F_{trac_req} \right) = 0.64$
μ	r _{roq} =0.64
Required Braking Ford	re:
Front Axle Braking Force:	$F_{front,axie,brake} = min\left(\mu_{trac} \cdot N_{front,axie,uphili}, F_{axie,brake}\right) = 1351.2\ lbf$
Rear Axle Braking Force:	$\boldsymbol{F}_{roar_azic_brake} \coloneqq min\left(\mu_{trac} \cdot \boldsymbol{N}_{roar_azic_wphill}, \boldsymbol{F}_{azic_brake}\right) = 6339.5 \ lbf$
Total available Braking Force:	$F_{\textit{Brake_avail}} \coloneqq F_{\textit{front_axle_brake}} + F_{\textit{rear_axle_brake}} = 7690.7 \ \textit{lbf}$
Required Braking Force:	$F_{\textit{Brake_req}} := W_{\textit{uphill}} \cdot \sin \left(\theta_{\textit{uphill}}\right) = 4497.8 \textit{ lbf}$
Traction Index - Brake:	$TI_{brake} := \frac{F_{Brake_avail}}{F_{Brake_req}} = 1.71$
	Evaluation3 = "pass"
Minimum Required Friction	$\mu_{reg} := \mu_{min} (N_{front_axle_uphill}, N_{roar_axle_uphill}, F_{axle_motor}, F_{Brake_reg})$

Gradeability Calculations	s - CWT Downhill:
Angle of Inclination:	$\theta_{downhill} \coloneqq \operatorname{atan}\left(sr_{downhill}\right) = 26.57 \deg$
Front Axle Normal Force:	$N_{front_axle_downhill} := F_{front_axle_downhill} \cdot \cos \left(\theta_{downhill}\right) = 7739.4 \ lbf$
Rear Axle Normal Force:	$N_{rear_axle_downhill} \coloneqq \!\! F_{rear_axle_downhill} \cdot \cos \left(\theta_{downhill} \right) \! = \! 5459.9 \; lbf$
Tractive Effort Required	to descend Grade:
Front Axle Tractive Force:	$r_{front_azte_traction} = min \left(\mu_{trac} \cdot N_{front_azte_downhill}, F_{azte_motor}\right) = 3448.7 \ lbf$
Rear Axle Tractive Force:	$F_{rear,axle,traction} = min \left(\mu_{trac} \cdot N_{rear,axle,downhill}, F_{axle,motor} \right) = 3448.7 \ lbf$
Total Available Tractive Effort:	$F_{trac,avail}\!:=\!F_{front,axle_traction}\!+\!F_{rear_axle_traction}\!=\!6897.4\;lbf$
Tractive Effort Required: F_{true}	$c_{req} := W_{downhill} \cdot \left(-\sin\left(\theta_{downhill}\right) + f_{res} \cdot \cos\left(\theta_{downhill}\right)\right) = -6335.6 \ lbf$
Traction Index - Drive:	$TI_{drive} := \frac{F_{troc, avail}}{F_{troc, rec}} = -1.089$
	Evaluation2 = "pass"
Traction Index - Drive: μ	$a_{req} \coloneqq \mu_{min} \left(N_{front, axie, downhill}, N_{rear, axie, downhill}, F_{axie, meter}, F_{trac, req} ight) = 0.01$
μ	$t_{req} = 0.01$
Required Braking For	ce:
Front Axle Braking Force:	$F_{\mathit{front.axic_trake}} := \min \left(\mu_{\mathit{true}} \cdot N_{\mathit{front.axic_downMill}}, F_{\mathit{axic_trake}} \right) = 5030.6 \; lbf$
Rear Axle Braking Force:	$F_{\textit{rear,axisc,brake}} := \min \left(\mu_{\textit{trac}} \cdot N_{\textit{rear,axisc,downAll}}, F_{\textit{axisc,brake}} \right) = 3548.9 \; lbf$
Total available Braking Force:	$F_{Brake_avail} \coloneqq F_{front_axle_brake} + F_{rear_axle_brake} = 8579.5 \ lbf$
Required Braking Force:	$F_{Brake_req} := W_{downhill} \cdot \sin \left(\theta_{downhill}\right) = 6599.6 \ lbf$
Traction Index - Brake:	$TI_{brake} := \frac{F_{Brake_avail}}{F_{Brake_rea}} = 1.3$
	Evaluation3 = "pass"
Minimum Required Friction Co-efficient:	$\mu_{req} \coloneqq \!$
	$\mu_{req} = 0.58$

Angle of Inclination:	$\theta_{sidehill} := atan (sr_{sidehill}) = 19.29 \ deg$
Left side wheels Normal Fo	orce: $N_{left,side_sidehill} = F_{left,side_sidehill} \cdot \cos(\theta_{sidehill}) = 3389.3 \ lbf$
Right side wheels Normal I	Force: $N_{right,side,sidehill} = F_{right,side,sidehill} \cdot \cos(\theta_{sidehill}) = 10530.5 \ lb$
Tractive Effort Required	d to climb Grade:
Front Axle Tractive Force:	$F_{left,side_traction} = min\left(\mu_{trac} \cdot N_{left_side_sidehill}, F_{axis_motor}\right) = 2203 \ lbf$
Rear Axle Tractive Force:	$F_{right,side:truction} := min \left(\mu_{true} \cdot N_{right,side:side;side;nate}, F_{aste,motor} \right) = 3448.7 \ lbf$
Total Available Tractive Eff	Fort: $F_{true, avail} = F_{left, side, traction} + F_{right, side, traction} = 5651.7 lbf$
Tractive Effort Required:	$F_{troc_req} := W_{sidehill} \cdot \left(\sin \left(\theta_{sidehill} \right) + f_{res} \right) = 5166.9 \ lbf$
Traction Index - Drive:	$TI_{drive} = \frac{F_{trac, avail}}{F_{trac, req}} = 1.094$
	Evaluation 2 = "pass"
Traction Index - Drive:	$\mu_{req} := \mu_{min} \left(N_{left, side, sidehill}, N_{right, side, sidehill}, F_{aris, motor}, F_{trac, req} \right) = 0.51$
	$\mu_{req} = 0.51$
Required Braking For	rce:
Left side wheels Braking Forc	e: $F_{Left_Wheel_Brake} = min\left(\mu_{trac} \cdot N_{left_tide_pidelell}, F_{axie_brake}\right) = 2203 \ lbf$
Right side wheels Braking For	rce: $F_{Right,Wheel,Brake} = min \left(\mu_{true} \cdot N_{right,side,sidehill}, F_{axie,brake} \right) = 6339.5 \ tt$
Total available Braking Force:	$F_{Brake_avail}\!:=\!F_{Left_Wheel_Brake}\!+\!F_{Bight_Wheel_Brake}\!=\!8542.5~\textit{lbf}$
Required Braking Force:	$F_{\textit{Brake_req}} \! := \! W_{\textit{sidehill}} \! \cdot \! \sin \left(\! \theta_{\textit{sidehill}} \right) \! = \! 4871.9 \; \textit{lbf}$
Traction Index - Brake:	$TI_{brake} := \frac{F_{Brake_evail}}{F_{Brake_req}} = 1.75$
	Evaluation3 = "pass"
Minimum Required Friction Co-efficient:	$\mu_{req} \! \coloneqq \! \mu_{min} \left(\! N_{left_nide_nidehill}, \! N_{right_nide_nidehill}, \! F_{axle_motor}, \! F_{Brake_req} \right)$
	$\mu_{req} = 0.42$

Analysis Configurat	Configuration	Case	Load consideration	Analytix data		*Recommended Slope rating	
	Configuration			Rise/Run [%]	Floor Angle [°]	Rise/Run [%]	Floor Angle [°]
Engine Option Gradeability DC Option		Uphill	1 x m _p = 176 lb	32.2%	17.86	32.0%	17.74
	Fasina Ontina	Downhill	1 x m _p = 176 lb	49.3%	26.26	45.0%	24.23
	Engine Option	Side hill	1 x m _p = 176 lb	37.8%	20.71	32.0%	17.74
		Truck ramp	1 x m _p = 176 lb	32.2%	17.86	32.0%	17.74
		Uphill	1 x m _p = 176 lb	32.2%	17.86	32.0%	17.74
	DC Ontinu	Downhill	1 x m _p = 176 lb	45.0%	24.24	45.0%	24.23
	DC Option	Side hill	1 x m _p = 176 lb	37.8%	20.71	32.0%	17.74
		Truck ramp	1 x m _p = 176 lb	32.2%	17.86	32.0%	17.74

Maximum Gradeability Calculation of the machine by using Analytix and Mathcad tools:

- The analyses were carried out for both Engine and DC options.
- Analytix, kinematic tool was used to extract the Axle loads for different machine configurations.
- The Gradeability calculations were done as per standard practice.
- Gradeability of the machine was predicted for the available Traction
 & Friction forces

Conclusion:

- From the analysis it was found that the maximum Gradeability for;
 - ➤ Uphill = 32%
 - Downhill = 45%
 - ➤ Sidehill = 32%
 - Occurring based on the available Traction and Friction forces.
- Truck ramp case: Uphill gradeability configuration is considered for Truck ramp slope rating.